

Figure 4—Release of griseofulvin from constant surface tablets. Key: O, 10% solid dispersion; Δ , 10% griseofulvin–90% succinic anhydride physical mixture; \Box , 10% griseofulvin–90% succinic acid physical mixture; and \bullet , pure griseofulvin.

a marked increase in dissolution rate cannot be explained by the presence of a higher energy polymorphic form because the X-ray diffraction study showed that the identical crystalline form was present in the dispersed system as the pure griseofulvin used in the present study (5).

Since some succinic anhydride (about 7% w/w) was formed during the preparation of solid dispersions (5), it was thought that such an impurity might enhance the dissolution rate. The fact that the dissolution rate of griseofulvin was only moderately increased in the presence of 90% succinic anhydride (Fig. 4), however, rules out the important role of this decomposition product. Based on these results and analyses, it is postulated that the major factor in the increasing dissolution rate in the 10% griseofulvin dispersion was the presence of extremely fine crystals of griseofulvin. Crystalline size alone has been shown to affect the solubility of drugs (9). After about 42 min, the cumulative plot curve of the 10% griseofulvin solid dispersion became parallel with that of pure griseofulvin. This result probably was due to the presence of negligible concentrations of the solubilizers, succinic acid and succinic anhydride, at the outer controlling layer of the tablet and to the presence of a coarser particle size of griseofulvin at the dissolution surface; this coarser particle size was formed as a result of the aggregation and/or crystal growth of ultrafine crystals. It must be noted that these tablet dissolution studies were carried out under essentially sink conditions (the solubility of griseofulvin at 37° is about 12.5 μ g/ml).

REFERENCES

(1) W. L. Chiou and S. Riegelman, J. Pharm. Sci., 60, 1231(1971).

(2) W. L. Chiou and L. D. Smith, ibid., 60, 125(1971).

(3) N. Athanikar and W. L. Chiou, Abstract 22, presented at the Basic Pharmaceutics Section, APhA Academy of Pharmaceutical Sciences, San Francisco meeting, April 1975.

(4) A. H. Goldberg, M. Gibaldi, and J. L. Kanig, J. Pharm. Sci., 55, 487(1966).

(5) W. L. Chiou and S. Niazi, *ibid.*, 62, 498(1973).

(6) Ibid., **60**, 1333(1971).

(7) K. Sekiguchi, N. Obi, and Y. Ueda, Chem. Pharm. Bull., 9, 866(1961).

(8) W. I. Higuchi, J. Pharm. Sci., 56, 315(1967).

(9) A. N. Martin, J. Swarbrick, and A. Cammarata, "Physical Pharmacy," 2nd ed., Lea & Febiger, Philadelphia, Pa., 1969, p. 313.

ACKNOWLEDGMENTS AND ADDRESSES

Received August 29, 1975, from the Clinical Pharmacokinetics Laboratory and Department of Pharmacy, College of Pharmacy, University of Illinois at the Medical Center, Chicago, IL 60680 and the College of Pharmacy, Washington State University, Pullman, WA 99163

Accepted for publication October 23, 1975.

Presented in part at the Basic Pharmaceutics Section, APhA Academy of Pharmaceutical Sciences, Houston meeting, April 1972.

Supported in part by funds provided for biological and medical research by State of Washington Initiative Measure 171 and Graduate School Research Funds, Washington State University.

* To whom inquiries should be directed. Present address for both authors: College of Pharmacy, University of Illinois at the Medical Center, Chicago, IL 60680

Application of Trichloroacetyl Isocyanate to NMR Analysis of Steroids of Pharmaceutical Interest I: Corticosteroids and Chemically Related Compounds

MONIQUE LANOUETTE, DONALD LEGAULT, and BRUCE A. LODGE *

Abstract □ The trichloroacetyl carbamates of 38 corticosteroids and chemically related compounds were prepared, and their NMR spectra in deuterochloroform were obtained. The effects of the introduction of a number of functional groups on the chemical shift of the carbamate proton signals were determined. Keyphrases □ Trichloroacetyl isocyanate—reaction with cortico-

Over the past several years, trichloroacetyl isocyanate has been used as a synthetic (1-6) and as a diagnostic (7-10) reagent. It reacts with hydroxyl groups to form steroids to form carbamates, application to NMR analysis NMR—analysis, carbamates of corticosteroids formed by reaction with trichloroacetyl isocyanate of carbamates formed by reaction with trichloroacetyl isocyanate Carbamates—formed by reaction of trichloroacetyl isocyanate with corticosteroids, NMR analysis

carbamates of type I. Such derivatives are usually much more soluble in deuterochloroform than are the parent compounds; indeed, many underivatized corticosteroids

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				Ca	rbamat	e Proto	su		Ŭ	arbinol	Protor	IS	W	ethyl I	Protons		/inylic	Proton	s
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Compound	11β	17α	21	17β	11α	3β	11α	21	11β	3α	18	19	(Other)	-	5	4	9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	I I I I I I I I I I I	11a-Hydroxypregn-4-ene-3,20-dione 11β-Hydroxypregn-4-ene-3,20-dione 11β-Hydroxyandrost-4-ene-3,17-dione 11β-Hydroxyandrosta-1,4-diene-	508 512 520				523		$336 \\ 338 \\ 338 \\ 342 $		323		46 52 68 67	80 79 80 78	$128 (21) \\ 128 (21) \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ + \\ - \\ + \\ +$	421		346 343 344 364 364	
XII $17a_{a,21}^{a}$, 1000 doxypregru-4-ene 3, 200 dione594547575050725073XII $7a_{a,21}^{a}$, 210 biby doxypregru-4-ene 3, 200 dione574203-4872-344XIVCortisone*574-583549203-4785-345XIVPreditisone*570560560301-4886-345XVIIPreditisone*510560560301-4986-465365XVIIIPreditisone*512563547301-4986-455367XVIIIPreditisone*513566545563547334305-4986465368XVIIIPreditisolone517566545334292-6277413713XXIIIPreditisolone513547334292-6271413713XXIIIPatanethasone 21-acetate5115863342926161613416713713XXIIIPatanethasone 21-acetate51351633429261616161611611713713X	∧™ ^V HHV HHV XXXXX	17α -Hydroxypregn-4-ene-3, 20-dione 17α -Hydroxypregn-4-ene-3, 11, 20-trione 21-Hydroxypregn-4-ene-3, 11, 20-trione 21-Hydroxypregn-4-ene-3, 11, 20-trione Pregnenolone 11β , 21-Dihydroxypregn-4-ene-3, 20-dione	510 503	562	526 528 528 529			203	335 336 335	285 285 285 287 285		282	554444 56034440 5603	72 85 85 79 79	$131 (21) \\ 129 (21) \\ - \\ 128 (21) \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $			$\begin{array}{c} 345\\ 344\\ 344\\ 344\\\\ 344\\ 343\\ 343\\ 343\\$	326
XIVContisence 332 549 $=$ 302 $=$ 47 85 $=$ 345 XIIIPredistone stetated $=$ 593 550 $=$ $=$ 291 $=$ 465 86 344 XVIIIPredistone $=$ 593 550 $=$ 291 $=$ 498 86 $=$ 465 367 XVIIIPredistone $=$ 593 566 548 $=$ $=$ 321 $=$ 418 86 $=$ 465 367 XIXPredistone $=$ 530 566 548 $=$ $=$ 334 304 $=$ 45 367 XIXPredistone $=$ 530 566 545 $=$ $=$ 334 304 $=$ 47 77 344 XIXPredistone $=$ 532 566 545 $=$ $=$ 334 394 $=$ 465 367 XXXBetamethasone 21 -actate 532 506 545 $=$ $=$ 334 392 $=$ 415 380 XXXBetamethasone 21 -actate 533 530 $=$ $=$ 344 380 $=$ 455 66 465 367 XXXBetamethasone 21 -actate 533 530 $=$ $=$ 344 380 $=$ 455 385 XXXIBetamethasone 21 -actate 520 581 $=$ $=$ 344 280	IIIX IIIX	17α , 21-biby droxy pregn-4-ene-3, 20-dione 17α , 21-Dihy droxy pregn-4-ene-3, 20-dione $91-\alpha$ state	11	$\begin{array}{c} 594 \\ 574 \end{array}$	547					$302 \\ 293$			50 48	72 72				$\begin{array}{c} 344\\ 344\end{array}$	
	AXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	21-acetate Cortisone Cortisone Prednisone Prednisone 21-acetate Hydrocortisoned Prednisolone 21-acetate Betamethasone 21-acetated Betamethasone 21-valerated Betamethasone 21-valerated Beclomethasone 17-ynopionate Beclomethasone 21-valerated Beclomethasone 21-rectated Beclomethasone 21-acetated Dexamethasone 21-acetated Triamcinolone 21-acetated Fluprednisolone 21-acetated Fluprednisolone 21-acetated Fluprednisolone 21-acetated Fluprednisolone 21-acetated Fluprednisolone 21-acetated Fluprednisolone 21-acetated Fluprednisolone 21-acetated Fluprednisolone acetated Fluprednisolone acetated Fluprednisolone flox, 21-diacetatef Fluorentolone hexacetonide Fluorentolone flox, 21-diacetatef Fluorentolone flox, 21-diacetatef	5520 5197 51000555555555555555555555555555555555	583 586 586 586 586 586 586 586 586 587 581 581 581 587 587 586 586 586 586 586 586 586 586 586 586	$\begin{array}{c} 549\\ 542\\ 547\\ 547\\ 547\\ 547\\ 547\\ 547\\ -1\\ -1\\ -1\\ -1\\ -1\\ -1\\ -1\\ -1\\ -1\\ -1$				333446 333446 333446 333446 333446 333446 333446 333446 333446 333446 333446 333446 333446 333446 333346 33346 33346 33346 33346 33346 33346 33346 33346 33346 334	2223926112222322222222222222222222222222			44440000000000000000000000000000000000	8888 865 865 865 865 865 865 865 865 865	$ \begin{bmatrix} 62 \\ 60 \\ 60 \\ 61 \\ 61 \\ 61 \\ 61 \\ 61 \\ 61$	$\begin{array}{c} 465\\ 465\\ 465\\ 465\\ 482\\ 481\\ 481\\ 481\\ 481\\ 481\\ 481\\ 481\\ 481$	332 332 332 332 332 332 332 332 332 332	22222222222222222222222222222222222222	

Table I—Chemical Shifts^a (Hertz) of the Proton Signals in the NMR Spectra^b of the Trichloroacetyl Carbamate Derivatives of Corticosteroids and Chemically Related Compounds

Figure 1—The 60-MHz NMR spectrum of the trichloroacetyl isocyanate derivative of 11β,21-dihydroxypregn-4-ene-3,20-dione in deuterochloroform.

are not sufficiently soluble in deuterochloroform for the determination of their NMR spectra.

$$\begin{array}{c} H \\ \parallel \\ R - O - C - N - C - CCl_3 \\ \parallel \\ O \\ type I \end{array}$$

A note by Trehan *et al.* (7) led to a detailed study of the NMR spectroscopy of the trichloroacetyl carbamate derivatives of numerous corticosteroids and chemically related compounds of pharmaceutical interest. Polyhydroxy compounds should react at each hydroxyl group, with the carbamate proton signal in the NMR spectrum for each such hydroxyl appearing as a distinct singlet in a region of the spectrum isolated from all other signals.

EXPERIMENTAL

Approximately 40 mg of a hydroxysteroid¹ was accurately weighed into a 1-ml volumetric flask. Approximately 0.5 ml of deuterochloroform was added to the flask, followed by trichloroacetyl isocyanate² ($\sim 20 \ \mu$ l/hydroxyl group). Deuterochloroform was added to volume, and the flask was shaken until dissolution occurred.

The NMR spectrum was obtained³ in the usual manner at $40 \pm 2^{\circ}$, with tetramethylsilane added as the internal standard. Chemical shifts are reported as hertz downfield from tetramethylsilane (0 Hz).

 Table II—Concentration Effect on the Chemical Shift^a

 (Hertz) of the Three Carbamate Proton Signals in the

 NMR Spectrum of the Reaction Product of Prednisolone

 with Trichloroacetyl Isocyanate

<u></u>		Concent	ration, M	
Proton	0.07	0.14	0.21	0.28
$\frac{11\beta}{17\alpha}$	513 551	520 566	$\begin{array}{c} 525\\ 572 \end{array}$	527 575
21	538	548	554	556

^a Chemical shifts downfield from tetramethylsilane (0 Hz).

Some samples (dexamethasone, dexamethasone acetate, paramethasone acetate, and triamcinolone diacetate) were left for 24 hr at room temperature after being made up to volume because of the very slow reaction to the severely hindered 17α -hydroxyl group with the reagent. Other slow reactions are noted in Table I.

The concentration dependence of the signal from the carbamate proton was determined by accurately weighing 10, 20, 30, and 40 mg of prednisolone and making up to 0.4 ml after adding 15, 30, 45, and 60 μ l, respectively, of trichloroacetyl isocyanate.

Table III—Effect of Each 11 β , 17 α -, and 21-Hydroxyl Group Carbamate on the Chemical Shift^{*a*} (Hertz) of the Carbamate Proton Signal of the Others

	Hydroxyl		
Compound	11β	17α	21
II	508		
XI	510		529
VII			526
v	—	562	
XII		594	547
XVIII	512	563	547
XIX	520	566	547

^a Chemical shifts downfield from tetramethylsilane (0 Hz).

¹ Steroids were obtained from the Pharmaceutical Chemistry Division collection of reference materials. ² Eastman Kodak Co., Rochester, N.Y.

³ Varian A60A NMR spectrometer, Varian Associates, Georgetown, Ontario, Canada.

Table IV—Effect of Introducing an 11-Carbonyl Group
on the Chemical Shift ^a (Hertz) of the Carbamate Proton
Signals from 17α - and 21-Hydroxyl Groups

	Hydroxyl		
Compound	17α	21	
XII	594	547	
XIV	583	549	
XIII	574		
XV	563		
v	562		
VI	554		
VII		526	
VIII	—	528	

^a Chemical shifts downfield from tetramethylsilane (0 Hz).

RESULTS AND DISCUSSION

Chemical shifts are reported in Table I for the carbamate proton signals and also for the signals from the carbinol protons, the tertiary methyl protons (C-18 and C-19), and the vinylic protons. All spectra were obtained at a concentration of 40 mg/ml, because, as shown in Table II, there is a marked concentration effect on the position of the carbamate proton signals. A typical spectrum is shown in Fig. 1 (Compound X).

Table III shows the effect of each 11β -, 17α -, and 21-hydroxyl group on the chemical shift of the others (in terms of the respective carbamate NH signals). From Table III, the following conclusions may be drawn: (a) the chemical shifts of the 11β - and 21-hydroxyl group derivatives are independent of each other and (b) the 17α - and 21hydroxyl group derivatives are mutually deshielding.

Introducing a 17 α -hydroxyl into the parent molecule deshields the 21-carbamate proton signal by approximately 20 Hz; likewise, introducing a 21-hydroxyl deshields the 17 α -carbamate proton signal by approximately 30 Hz. However, an 11 β -hydroxyl counteracts the effect of the 21-hydroxyl on the 17 α -carbamate proton signal (XII versus XVIII). Comparison of XVIII with XIX shows that the Δ^{11} -function has a minimal effect on the chemical shift of the 17 α - and 21-carbamate NH signals but deshields the 11 β -carbamate signal by 8 Hz.

Table IV shows the effects of introducing an 11-carbonyl group on the chemical shift of the 17α - and 21-carbamate proton signals. The compounds are grouped in pairs, with the 11-carbonyl derivative appearing below the corresponding unoxygenated compound. From these results, it can be seen that the 17α -carbamate proton signal is shielded by approximately 10 Hz, whereas the 21-carbamate proton signal is deshielded by only 2 Hz, which is not significant.

Table V shows the effect of acetylation of the 21-hydroxyl group on the chemical shift of the carbamate proton signals at 11β and 17α . Some general comments may be made about these results, noting that there is one significant exception (XXVIII/XXIX). The 17α -carba-

 Table V—Effect of 21-Acetylation on the Chemical Shift^a

 (Hertz) of the 11- and 17-Carbamate Proton Signals

		Proton		
Compound	11β	17α	21	
XII		594	547	
XIII	—	574	_	
XIV		583	549	
XV		563		
XVI		590	550	
XVII	—	576		
XIX	520	566	548	
XX	513	547	_	
XXI	522	606	545	
XXII	517	586		
х	510		529	
XI	503			
XXVIII	531	611	547	
XXIX	529	576		

^a Chemical shifts downfield from tetramethylsilane (0 Hz).

Table VI—Predictions of Major Signals (Hertz) in the NMR Spectra of the Carbamates of XV and XX^a

Compound	Protons	Predicted	Observed
xv	C-18 Methyl	48	46
	C-19 Methyl	85	86
	21	293	291
	C-4 Vinvlic	344	344
	17α-Carbamate	563	563
XX	C-18 Methyl	63	63
	C-19 Methyl	78	78
	21	291	292
	11α	342	344
	C-4 Vinylic	361	363
	C-2 Vinylic	374	377
	C-1 Vinylic	424	424
	11β-Carbamate	520	513
	17α-Carbamate	545	547

^a Chemical shifts downfield from tetramethylsilane (0 Hz).

mate proton signal is shielded by approximately 20 Hz, and the 11β -carbamate proton signal is shielded by 5–7 Hz upon acetylation of the 21-hydroxyl.

Compound XXVIII has a 16α -methyl substituent, which sterically interacts with the 17α -hydroxyl group. The best evidence for this hindrance is the fact that XXVIII, together with XXIX, XXXIV, and XXXVI, all of which possess 16α -substituents, requires 24 hr for the 17α -carbamate derivative to form. The distortion created by the 16α -substituent in XXVIII has the effect that, when a 21-acetyl group is introduced (XXIX), the 17α -carbamate proton signal is shielded by 35 Hz, whereas the shielding of the 11α -carbamate proton signal is reduced to 2 Hz.

For two of the compounds studied, XV and XX, predictions were made, based on accumulated results, of the major signals in their NMR spectra. These results are shown in Table VI. Some signals, such as the vinylic protons, are easy to predict. The tertiary methyl signals are also relatively easy to predict since tables are available to assist in the prediction (11). As more compounds are studied, further rules may be discovered to assist in more accurate predictions of the carbamate proton signals.

The reverse situation is immediately obvious: that given such an NMR spectrum, one can deduce the structure and stereochemistry of functional groups. Therefore, the technique is of value in the structure determination in unknown compounds, thereby extending its analytical applications.

REFERENCES

(1) J. L. Chitwood, J. C. Martin, and P. G. Gott, J. Org. Chem., 36, 2228(1971).

(2) N. N. Arbuzov, G. N. Rusanov, and B. A. Arbuzov, Izv. Akad. Nauk SSSR, Ser. Khim., 1972, 2016.

(3) B. A. Arbuzov, N. N. Zobova, and F. B. Balabanova, *ibid.*, 1972, 2086.

(4) B. A. Arbuzov, N. N. Zobova, F. B. Balabanova, and M. F. Tarasova, *ibid.*, 1972, 2324.

(5) Z. Sanek and L. Novotny, Tetrahedron Lett., 1972, 5167.

(6) B. A. Arbuzov, N. N. Zobova, F. B. Balabanova, and N. F. Tarasova, *Izv. Akad. Nauk SSSR, Ser. Khim.*, **1973**, 456.

(7) I. R. Trehan, C. Monder, and A. K. Bose, Tetrahedron Lett., 1968, 67.

(8) F. Will and C. Varsel, Anal. Chim. Acta, 44, 233(1969).

(9) D. H. Mak and M. G. Rogers, Anal. Chem., 44, 837(1972).

(10) V. Goodlett, ibid., 37, 431(1965).

(11) N. S. Bhacca and D. H. Williams, "Applications of NMR Spectroscopy in Organic Chemistry," Holden-Day, San Francisco, Calif., 1964, p. 19.

ACKNOWLEDGMENTS AND ADDRESSES

Received June 30, 1975, from the Drug Research Laboratories, Health Protection Branch, Tunney's Pasture, Ottawa, Ontario, Canada KlA 0L2.

Accepted for publication October 24, 1975.

* To whom inquiries should be directed.